Observation of a four-spin solid effect #DNPNMR

Published: Friday, 22 July 2022 - 10:00 -0400

Author: Thorsten Maly

Tan, Kong Ooi, and Robert G. Griffin. “Observation of a Four-Spin Solid Effect.” The Journal of Chemical Physics 156, no. 17 (May 7, 2022): 174201.

https://doi.org/10.1063/5.0091663.

The two-spin solid effect (2SSE) is one of the established continuous wave dynamic nuclear polarization mechanisms that enables enhancement of nuclear magnetic resonance signals. It functions via a state-mixing mechanism that mediates the excitation of forbidden transitions in an electron–nuclear spin system. Specifically, microwave irradiation at frequencies ωμw ∼ ω0S ± ω0I, where ω0S and ω0I are electron and nuclear Larmor frequencies, respectively, yields enhanced nuclear spin polarization. Following the recent rediscovery of the three-spin solid effect (3SSE) [Tan et al., Sci. Adv. 5, eaax2743 (2019)], where the matching condition is given by ωμw = ω0S ± 2ω0I, we report here the first direct observation of the four-spin solid effect (4SSE) at ωμw = ω0S ± 3ω0I. The forbidden double- and quadruple-quantum transitions were observed in samples containing trityl radicals dispersed in a glycerol–water mixture at 0.35 T/15 MHz/9.8 GHz and 80 K. We present a derivation of the 4SSE effective Hamiltonian, matching conditions, and transition probabilities. Finally, we show that the experimental observations agree with the results from numerical simulations and analytical theory.