Fast magic angle spinning for the characterization of milligram quantities of organic and biological solids at natural isotopic abundance by 13C–13C correlation DNP-enhanced NMR #DNPNMR

Published: Sunday, 12 February 2023 - 10:00 -0400

Author: Thorsten Maly

Smith, Adam N., Rania Harrabi, Thomas Halbritter, Daniel Lee, Fabien Aussenac, Patrick C. A. van der Wel, Sabine Hediger, Snorri Th. Sigurdsson, and Gaël De Paëpe. “Fast Magic Angle Spinning for the Characterization of Milligram Quantities of Organic and Biological Solids at Natural Isotopic Abundance by 13C–13C Correlation DNP-Enhanced NMR.” Solid State Nuclear Magnetic Resonance 123 (February 1, 2023): 101850.

https://doi.org/10.1016/j.ssnmr.2022.101850.

We show that multidimensional solid-state NMR 13C–13C correlation spectra of biomolecular assemblies and microcrystalline organic molecules can be acquired at natural isotopic abundance with only milligram quantities of sample. These experiments combine fast Magic Angle Spinning of the sample, low-power dipolar recoupling, and dynamic nuclear polarization performed with AsymPol biradicals, a recently introduced family of polarizing agents. Such experiments are essential for structural characterization as they provide short- and long-range distance information. This approach is demonstrated on diverse sample types, including polyglutamine fibrils implicated in Huntington’s disease and microcrystalline ampicillin, a small antibiotic molecule.