Gao, Chukun, Pin-Hui Chen, Nicholas Alaniva, Snædís Björgvinsdóttir, Ioannis Pagonakis, Alexander Däpp, Michael Urban, Ronny Gunzenhauser, and Alexander Barnes. “23 Tesla High Temperature Superconducting Pocket Magnet.” Superconductor Science and Technology 37, no. 6 (June 1, 2024): 065018.
https://doi.org/10.1088/1361-6668/ad44df.
We present a compact 23 T no-insulation (NI) magnet that was wound with 60 m of 10 mm wide high temperature superconducting (HTS) tape. The magnet consists of only one pocket-sized double pancake (DP) coil with an inner diameter of ∼6 mm, a height of 20 mm, and an outer diameter of 41.6 mm. Another NI coil of similar size but with a larger inner diameter of 8 mm reached a slightly lower magnetic field of 21 T. We also present a smaller coil which was wound with only 20 m of HTS tape and still achieved a magnetic field of 16 T. During the experiments in liquid helium, each coil was charged to a current between 690 A and 850 A, corresponding to a high current density of 1500–1900 A mm−2. The small bore size and high current density contributed to the high fields generated by these coils. We present the fabrication details, helium tests and repeatability analysis of these ‘pocket’ magnets.