Kaminker, I., R. Barnes, and S. Han, Arbitrary waveform modulated pulse EPR at 200GHz. J Magn Reson, 2017. 279: p. 81-90.
https://www.ncbi.nlm.nih.gov/pubmed/28482216
We report here on the implementation of arbitrary waveform generation (AWG) capabilities at approximately 200GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7T. This is achieved with the integration of a 1GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200GHz with >150mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200GHz. We demonstrate that in the power-limited regime of omega1<1MHz phase-modulated pulses were sufficient to achieve significant improvements in broadband (>10MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200GHz.