DNP-Enhanced Ultrawideline Solid-State NMR Spectroscopy: Studies of Platinum in Metal-Organic Frameworks #DNPNMR

Published: Wednesday, 11 January 2017 - 16:00 UTC

Author:

Kobayashi, T., et al., DNP-Enhanced Ultrawideline Solid-State NMR Spectroscopy: Studies of Platinum in Metal-Organic Frameworks. J Phys Chem Lett, 2016. 7(13): p. 2322-7.

https://www.ncbi.nlm.nih.gov/pubmed/27266444

Ultrawideline dynamic nuclear polarization (DNP)-enhanced (195)Pt solid-state NMR (SSNMR) spectroscopy and theoretical calculations are used to determine the coordination of atomic Pt species supported within the pores of metal-organic frameworks (MOFs). The (195)Pt SSNMR spectra, with breadths reaching 10000 ppm, were obtained by combining DNP with broadbanded cross-polarization and CPMG acquisition. Although the DNP enhancements in static samples are lower than those typically observed under magic-angle spinning conditions, the presented measurements would be very challenging using the conventional SSNMR methods. The DNP-enhanced ultrawideline NMR spectra served to separate signals from cis- and trans-coordinated atomic Pt(2+) species supported on the UiO-66-NH2 MOF. Additionally, the data revealed a dominance of kinetic effects in the formation of Pt(2+) complexes and the thermodynamic effects in their reduction to nanoparticles. A single cis-coordinated Pt(2+) complex was confirmed in MOF-253.