Electron decoupling with cross polarization and dynamic nuclear polarization below 6 K #DNPNMR

Published: Friday, 22 February 2019 - 16:00 UTC

Author:

Sesti, Erika L., Edward P. Saliba, Nicholas Alaniva, and Alexander B. Barnes. “Electron Decoupling with Cross Polarization and Dynamic Nuclear Polarization below 6 K.” Journal of Magnetic Resonance 295 (October 2018): 1–5.

https://doi.org/10.1016/j.jmr.2018.07.016.

Dynamic nuclear polarization (DNP) can improve nuclear magnetic resonance (NMR) sensitivity by orders of magnitude. Polarizing agents containing unpaired electrons required for DNP can broaden nuclear resonances in the presence of appreciable hyperfine couplings. Here we present the first cross polarization experiments implemented with electron decoupling, which attenuates detrimental hyperfine couplings. We also demonstrate magic angle spinning (MAS) DNP experiments below 6 K, producing unprecedented nuclear spin polarization in rotating solids. 13C correlation spectra were collected with MAS DNP below 6 K for the first time. Longitudinal magnetization recovery times with MAS DNP (T1DNP, 1H) of urea in a frozen glassy matrix below 6 K were measured for both the solid effect and the cross effect. Trityl radicals exhibit a T1DNP (1H) of 18.7 s and the T1DNP (1H) of samples doped with 20 mM AMUPol is only 1.3 s. MAS below 6 K with DNP and electron decoupling is an effective strategy to increase NMR signal-to-noise ratios per transient while retaining short recovery periods.