Endogenous Dynamic Nuclear Polarization for Sensitivity Enhancement in Solid-State NMR of Electrode Materials #DNPNMR

Published: Friday, 15 May 2020 - 14:00 UTC

Author:

Harchol, Adi, Guy Reuveni, Vitalii Ri, Brijith Thomas, Raanan Carmieli, Rolfe H. Herber, Chunjoong Kim, and Michal Leskes. “Endogenous Dynamic Nuclear Polarization for Sensitivity Enhancement in Solid-State NMR of Electrode Materials.” The Journal of Physical Chemistry C 124, no. 13 (April 2, 2020): 7082–90.

https://doi.org/10.1021/acs.jpcc.0c00858

Rational design of materials for energy storage systems relies on our ability to probe these materials at various length scales. Solid state NMR spectroscopy is a powerful approach for gaining chemical and structural insight at the atomic/molecular level, but its low detection sensitivity often limits applicability. This limitation can be overcome by transferring the high polarization of electron spins to the sample of interest in a process called dynamic nuclear polarization (DNP). Here we employ for the first time, metal ion-based DNP to probe pristine and cycled composite battery electrodes. A new and efficient DNP agent, Fe(III), is introduced, yielding lithium signal enhancement up to 180 when substituted in the anode material Li4Ti5O12. In addition to being DNP active, Fe(III) improves the anode performance. Reduction of Fe(III) to Fe(II) upon cycling can be monitored in the loss of DNP activity. We show that the dopant can be reactivated (return to Fe(III)) for DNP by increasing the cycling potential window. Furthermore, we demonstrate that the deleterious effect of carbon additives on the DNP process can be eliminated by using carbon free electrodes, doped with Fe(III) and Mn(II), which provide good electrochemical performance as well as sensitivity in DNP-NMR. We expect the approach presented here will expand the applicability of DNP for studying materials for frontier challenges in materials chemistry associated with energy and sustainability.