Chinthalapalli, S., et al., Homonuclear decoupling for spectral simplification of carbon-13 enriched molecules in solution-state NMR enhanced by dissolution DNP. Phys Chem Chem Phys, 2016. 18(16): p. 11480-7.
http://www.ncbi.nlm.nih.gov/pubmed/27058951
Complex overlapping multiplets due to scalar couplings (n)J((13)C, (13)C) in fully (13)C-enriched molecules can be simplified by polychromatic irradiation of selected spins. The signal intensities of the remaining non-irradiated signals are proportional to the concentrations, as shown in this work for the anomeric (13)C signals of the alpha- and beta-conformers of glucose. Homonuclear decoupling can therefore be useful for quantitative NMR studies. The resulting decoupled lineshapes show residual fine structures that have been investigated by means of numerical simulations. Simulations also show that homonuclear decoupling schemes remain effective despite inhomogeneous static fields that tend to hamper in cellulo and in vivo studies. Homonuclear decoupling schemes can be combined with dissolution DNP to obtain signal enhancements of more than four orders of magnitude. Polychromatic irradiation of selected spins does not cause significant losses of hyperpolarization of the remaining non-irradiated spins.