Solid-state NMR of nanocrystals #DNPNMR

Published: Wednesday, 30 October 2019 - 14:00 UTC

Author:

Gutmann, Torsten, Pedro B. Groszewicz, and Gerd Buntkowsky. “Solid-State NMR of Nanocrystals.” In Annual Reports on NMR Spectroscopy, 97:1–82. Elsevier, 2019.

https://doi.org/10.1016/bs.arnmr.2018.12.001

Recent advances in solid-state nuclear magnetic resonance (NMR) spectroscopy and dynamic nuclear polarization (DNP) of nanostructured materials are reviewed. A first group of materials is based on crystalline nanocellulose (CNC) or microcrystalline cellulose (MCC), which are used as carrier materials for dye molecules, catalysts or in combination with heterocyclic molecules as ion conducting membranes. These materials have widespread applications in sensorics, optics, catalysis or fuel cell research. A second group are metal oxides such as V-Mo-W oxides, which are of enormous importance in the manufacturing process of basic chemicals. The third group are catalytically active nanocrystalline metal nanoparticles, coated with protectants or embedded in polymers. The last group includes of lead-free perovskite materials, which are employed as environmentally benign substitution materials for conventional lead-based electronics materials. These materials are discussed in terms of their application and physicochemical characterization by solid-state NMR techniques, combined with gas-phase NMR and quantum-chemical modelling on the density functional theory (DFT) level. The application of multinuclear 1H, 2H, 13C, 15N and 23Na solid state NMR techniques under static or MAS conditions for the characterization of these materials, their surfaces and processes on their surfaces is discussed. Moreover, the analytic power of the combination of these techniques with DNP for the identification of low-concentrated carbon and nitrogen containing surface species in natural abundance is reviewed. Finally, approaches for sensitivity enhancement by DNP of quadrupolar nuclei such as 17O and 51V are presented that enable the identification of catalytic sites in metal oxide catalysts