Diffusion measurements with continuous hydrogenation in PHIP

Published: Monday, 14 December 2020 - 15:00 UTC

Author: Thorsten Maly

Bussandri, S., L. Buljubasich, and R.H. Acosta. “Diffusion Measurements with Continuous Hydrogenation in PHIP.” Journal of Magnetic Resonance 320 (November 2020): 106833.

https://doi.org/10.1016/j.jmr.2020.106833

DOSY is a powerful spectroscopic NMR technique that resolves components in mixtures through the evaluation of different diffusion coefficients. The application of DOSY to dilute mixtures is hampered by the low signal to noise ratios (SNR), leading to long acquisition times. The use of PHIP may resolve this issue as long as reproducible signals are obtained in order to perform 2D experiments. Here we show that the use of hollow membranes and adequate gas flow produce constant polarization for a time-span that enables the acquisition of 2D experiments. A pressure gradient is evidenced by the presence of convection, which is accounted for by using a DPGSE sequence. The influence of J-coupling evolution during the sequence is studied both numerically and experimentally, to determine the optimum echo-time. The applicability of the method for samples with poor SNR is explored by setting the reaction rate to achieve a low intensity of polarized signals.